S ep 2 00 8 A Simple Proof of a Conjecture of Simion ∗
نویسنده
چکیده
Simion had a unimodality conjecture concerning the number of lattice paths in a rectangular grid with the Ferrers diagram of a partition removed. Hildebrand recently showed the stronger result that these numbers are log concave. Here we present a simple proof of Hildebrand’s result.
منابع مشابه
A Simple Proof of a Conjecture of Simion
Simion had a unimodality conjecture concerning the number of lattice paths in a rectangular grid with the Ferrers diagram of a partition removed. Hildebrand recently showed the stronger result that these numbers are log concave. Here we present a simple proof of Hildebrand’s result.
متن کاملPartial proof of Graham Higman's conjecture related to coset diagrams
Graham Higman has defined coset diagrams for PSL(2,ℤ). These diagrams are composed of fragments, and the fragments are further composed of two or more circuits. Q. Mushtaq has proved in 1983 that existence of a certain fragment γ of a coset diagram in a coset diagram is a polynomial f in ℤ[z]. Higman has conjectured that, the polynomials related to the fragments are monic and for a fixed degree...
متن کاملOn the oriented perfect path double cover conjecture
An oriented perfect path double cover (OPPDC) of a graph $G$ is a collection of directed paths in the symmetric orientation $G_s$ of $G$ such that each arc of $G_s$ lies in exactly one of the paths and each vertex of $G$ appears just once as a beginning and just once as an end of a path. Maxov{'a} and Ne{v{s}}et{v{r}}il (Discrete Math. 276 (2004) 287-294) conjectured that ...
متن کاملOn the Closed-Form Solution of a Nonlinear Difference Equation and Another Proof to Sroysang’s Conjecture
The purpose of this paper is twofold. First we derive theoretically, using appropriate transformation on x(n), the closed-form solution of the nonlinear difference equation x(n+1) = 1/(±1 + x(n)), n ∈ N_0. The form of solution of this equation, however, was first obtained in [10] but through induction principle. Then, with the solution of the above equation at hand, we prove a case ...
متن کاملThe proof of a conjecture of Simion for certain partitions
Simion has a conjecture concerning the number of lattice paths in a rectangular grid with the Ferrer's diagram of a partition removed. The conjecture concerns the unimodality of this number over a sequence of rectangles with the sum of the length and width being constant and with a constant partition. This paper demonstrates this unimodality if the partition is symmetric or if the Ferrer's diag...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002